SCM9B-5000
4-Channel Sensor-to-Computer Modules
The SCM9B-5000 4-Channel Sensor-to-Computer Modules are a family of complete solutions designed for data acquisition systems based on personal computers and other processor-based equipment with standard serial I/O ports. The modules convert four analog input signals to engineering units and transmit in ASCII format to any host with standard RS-485 or RS-232C ports. These modules can measure temperature, voltage, and current. The modules provide direct connection to a wide variety of sensors and perform all signal conditioning, scaling, linearization, and conversion to engineering units.
Each channel of the SCM9B-5000 Series can be independently programmed by the user for zero, span, and filter, to scale linear input signals such as millivolts and milliamps to desired engineering units such as pounds or percent of full scale.
The SCM9B-5000 modules are easy to use. With these modules, anyone familiar with a personal computer can construct a data acquisition system. This modular approach to data acquisition is extremely flexible, easy to use, and cost effective. Data is acquired on a per channel basis so you only buy as many channels as you need. The modules can be mixed and matched to fit the application. They can be placed remote from the host and from each other.
The modules contain no pots or switches to be set. Features such as address, data rate, parity, echo, and scaling are selectable using simple commands over the communications port—without requiring access to the module. The selections are stored in nonvolatile EEPROM which maintains data even after power is removed.
The 5000 series is completely hardware and software-compatible with the 1000, 2000, 3000 and 4000 series and may be mixed in any combination.
All modules are supplied with removable screw-terminal connectors and captive mounting hardware. The connectors allow system expansion, reconfiguration or repair without disturbing field wiring.
Although software is not required, utility software (S1000) is available on IBM compatible diskette to make the 5000 easier to learn and use.
Each channel of the SCM9B-5000 Series can be independently programmed by the user for zero, span, and filter, to scale linear input signals such as millivolts and milliamps to desired engineering units such as pounds or percent of full scale.
The SCM9B-5000 modules are easy to use. With these modules, anyone familiar with a personal computer can construct a data acquisition system. This modular approach to data acquisition is extremely flexible, easy to use, and cost effective. Data is acquired on a per channel basis so you only buy as many channels as you need. The modules can be mixed and matched to fit the application. They can be placed remote from the host and from each other.
The modules contain no pots or switches to be set. Features such as address, data rate, parity, echo, and scaling are selectable using simple commands over the communications port—without requiring access to the module. The selections are stored in nonvolatile EEPROM which maintains data even after power is removed.
The 5000 series is completely hardware and software-compatible with the 1000, 2000, 3000 and 4000 series and may be mixed in any combination.
All modules are supplied with removable screw-terminal connectors and captive mounting hardware. The connectors allow system expansion, reconfiguration or repair without disturbing field wiring.
Although software is not required, utility software (S1000) is available on IBM compatible diskette to make the 5000 easier to learn and use.
APPLICATIONS
- Process Monitoring and Control
- Remote Data Logging to any Host Computer
- Product Testing
- Direct Connection to Modems
Certifications
Documents
Product Availability
Usually stock to 2-3 weeks
Dimensions & Accessories
Features
- Four Analog Input Channels
- Complete Sensor to RS-485 or RS-232 Interface
- ASCII Format Command/Response Protocol
- 500Vrms Analog Input Isolation
- 15-Bit Measurement Resolution
- Continuous Self-calibration; No Adjustments of Any Kind
- Programmable Digital Filter
- Requires +10V to +30VDC Unregulated Supply
- Transient Suppression on RS-485 Communications Lines
- Screw Terminal Plug Connectors Supplied
- Mix and Match with Single-Channel Units on Same Backpanel
- CE Compliant
Block Diagram
Ordering
SCM9B-5100 Voltage Inputs
NOTE: Data in below table can be filtered. Please use the
to make your selection. If you have any questions about the displayed data,
please contact Customer Service at +1 520-741-1404 or sales@dataforth.com
SCM9B-5200 Current Inputs
NOTE: Data in below table can be filtered. Please use the
to make your selection. If you have any questions about the displayed data,
please contact Customer Service at +1 520-741-1404 or sales@dataforth.com
SCM9B-5300 Thermocouple Inputs
NOTE: Data in below table can be filtered. Please use the
to make your selection. If you have any questions about the displayed data,
please contact Customer Service at +1 520-741-1404 or sales@dataforth.com
SCM9B-5400-Thermistor
NOTE: Data in below table can be filtered. Please use the
to make your selection. If you have any questions about the displayed data,
please contact Customer Service at +1 520-741-1404 or sales@dataforth.com
FAQ
Due to resource constraints on my computer, I'm unable to open the three dimensional CAD models provided on your website. Does Dataforth provide two demensional CAD models for download as well?
Two dimensional CAD models can be generated upon customer request. Please contact Customer Service for assistance.
How does the load resistance of a module affect the noise at the output?
Noise at the output of a module is independent of load resistance.
How do I convert an RMS voltage to its corresponding peak voltage?
To convert an RMS voltage to its corresponding peak voltage, you simply take the RMS voltage value and multiply it by the square root of 2, or roughly 1.414.
For example, 1500Vrms corresponds to a peak voltage of 1500 * 1.414 = 2121 Vp
If the input range of my signal conditioner is -1V to +1V and the output range is 0 to 10V, does this mean that it ignores polarity?
A signal conditioner with these I/O ranges does not mean that the module ignores the polarity of your voltage input. The output of voltage input modules are scaled linearly, meaning an input of -1V would correspond to an output of 0V, an input of 0V would correspond to an output of 5V, an input of +1V would correspond to an output of 10V, and so on.
Analog Devices announced a last time buy and discontinuance of their signal conditioning modules. Can I replace them with Dataforth signal conditioning modules?
Yes, in general, Dataforth signal conditioning modules are a direct replacement for all Analog Devices signal conditioning modules. e.g. "SCM5B35-xx: Linearized 4-Wire RTD Input Modules" will replace Analog Devices "5B35: Isolated 4 Wire RTD Input Signal Conditioning Module".
Please note that Dataforth signal conditioning modules are RoHS II compliant.
Can Dataforth provide calibration reports for modules I purchased?
Yes we can provide calibration reports for the modules that you purchased.
You can either
a) visit https://www.dataforth.com/TestDataReport.aspx to search for Test Report Datasheets by Serial Number or
b) you can send us a list of model numbers and their serial numbers to support@dataforth.com
Custom Modules
Below is a list of existing custom modules. If you don't see a module matching your target specifications, contact Customer Service and Application Support to discuss design guidelines and
design feasibility. Customer Service and Application Support can be reached at
sales@dataforth.com or +1-800-444-7644.
NOTE: Data in below table can be filtered. Please use the
to make your selection. If you have any questions about the displayed data,
please contact Customer Service at +1 520-741-1404 or sales@dataforth.com
* ... Status Codes: PR = Production, PT = Prototypes, QU = Quoted
We want your feedback!
We are interested in your feedback regarding our products. Please let us know what you think and if you have any questions regarding the SCM5B32 and how this product could apply to your application. Your feedback is very valuable to us and very much appreciated.
Was this content helpful?
Thank you for your feedback!